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ABSTRACT

Let S be a compact, connected, orientable surface of positive genus.

Let HT (S) be the Hatcher–Thurston complex of S. We prove that

AutHT (S) is isomorphic to the extended mapping class group of S mod-

ulo its center.

1. Introduction

Let S be a compact, connected, orientable surface of genus g with r ≥ 0 bound-

ary components. The extended mapping class group, Mod∗

S , of S is the group

of isotopy classes of all homeomorphisms (including orientation reversing) of

S. The group Mod∗

S can be viewed as the automorphism group of various ge-

ometric objects. These objects include the complex of curves, the complex of

nonseparating curves, the complex of separating curves, the complex of pants

decompositions and the complex of Torelli geometry.
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The Hatcher–Thurston complex HT (S), which is defined in Section 2 below,

plays a special role in the theory of mapping class groups. This complex was

constructed in [HT] by A. Hatcher and W. Thurston (and used by B. Wajn-

ryb [W1]) in order to find a presentation for the mapping class group. It was

also used by J. Harer [Ha] in his computation of the second homology group

of the mapping class group. There is a natural action of Mod∗

S on HT (S) by

automorphisms. The purpose of this paper is to show that every automorphism

of HT (S) is induced by some element of Mod∗

S . More precisely, we prove that

the automorphism group of the Hatcher–Thurston complex HT (S) is isomor-

phic to the group Mod∗

S modulo its center. We do this by proving that the

automorphism group of our complex is isomorphic to the automorphism group

of the complex G(S) on nonseparating simple closed curves, the complex defined

by P. Schmutz Schaller in [Sc]. (See Section 2 for the definition of G(S).)

Another complex, so-called the complex of curves C(S), was introduced about

the same time by W. Harvey [H]. It was also proved to be of the fundamental

importance in the topology of surfaces and in the theory of Teichmüller spaces.

Its automorphisms were investigated in the pioneering paper of N. Ivanov [Iv],

who proved that the group of automorphisms of C(S) is equal to the extended

mapping class group of S (for genus > 1), and found important applications

of this result to the mapping class groups and to the Teichmüller spaces. His

result was used to find automorphisms groups of various other objects related

to surfaces (see [BM], [CC], [FI], [Ir3], [M], [MW], [Sc]) and inspired some gen-

eralizations (see [Ir1], [Ir2], [K], [L]). The paper of D. Margalit [M] deals with

an object closest to the one considered by us, namely with the pants complex.

He proved that the automorphism group of the pants complex is isomorphic to

the extended mapping class group. While the results of [M] and of this paper

are similar in the spirit, neither of them implies the other.

Our main result, Theorem 10, is proved in the following way. The vertices of

the Hatcher–Thurston complex HT (S) are cut systems. We encode nonseparat-

ing simple closed curves by vertices and edges of HT (S). A great deal of work

is on this choice. Using this coding, we show that the automorphism group of

HT (S) has a well-defined action on the set of (isotopy classes of) nonseparating

simple closed curves. Under this action, we show that dual circles are mapped

to dual circles, giving rise to a homomorphism from the group of automorphisms

of HT (S) to that of the complex G(S). We prove that this homomorphism is

in fact an isomorphism. We want to point out that our proof and the proof of

the main result of [M] are independent of each other, but have some similari-
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ties. (The similarities are pointed out to us by Margalit.) The similarities are

perhaps not surprising, as these methods are indeed very natural to use in this

situation.

The paper is organized as follows. In Section 2, we give the definition of

various complexes used in the paper and state the relevant properties of these

complexes. In Section 3, we show that every automorphism f of the Hatcher–

Thurston complex HT (S) induces an automorphism f̃ of the complex G(S).

Finally, in Section 4, we state and prove the main theorem, and discuss some

alternative approach.

2. Various complexes on curves

A simple closed curve on S is said to be nontrivial (or essential) if it does not

bound a disk on S and it is not homotopic to a boundary component of S. We

denote simple closed curves by capital letters and their isotopy classes by the

corresponding lowercase letters. The geometric intersection number i(a, b)

of two classes a and b is defined as the minimum number of intersection points

of A and B for A ∈ a and B ∈ b.

We denote by A the set of isotopy classes of nontrivial simple closed curves

on S. If C is a simple closed curve on S, the surface obtained from S by

cutting along C is denoted by SC . Any two simple closed curves A, B are

always assumed to intersect each other minimally. We say that two simple

closed curves A and B on S are dual if they intersect each other transversely

at only one point. In this case we also say that their isotopy classes a and b are

dual. We note that for a simple closed curve A there is a curve dual to A if and

only if A is nonseparating.

The Hatcher–Thurston complex. Let C1, C2, . . . , Cg be pairwise disjoint

nonseparating simple closed curves on S such that the surface obtained from S

by cutting along all Ci is connected, so that it is a sphere with 2g + r boundary

components. We call the set {c1, c2, . . . , cg} a cut system and denote it by

〈c1, c2, . . . , cg〉.

Let v and w be two cut systems. Suppose that there are c ∈ v and d ∈ w

such that i(c, d) = 1 and v − {c} = w − {d}. We say that w is obtained from v

by an elementary move and we write v ↔ w.

If 〈c1, c2, . . . , ci, . . . , cg〉 ↔ 〈c1, c2, . . . , c
′

i, . . . , cg〉 is an elementary move, then

we drop the unchanged curves from the notation and write 〈ci〉 ↔ 〈c′i〉.

Let HT 1(S) be the graph obtained by taking cut systems on S as the vertex

set and pairs of vertices {v, w} such that v ↔ w as the (unordered) edges. This
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will be the 1-skeleton of the Hatcher–Thurston complex.

A sequence of cut systems (v1, . . . , vn) forms a path in HT 1(S) if every con-

secutive pair in the sequence is connected by an edge in HT 1(S). A path is

closed if v1 = vn. There are three types of distinguished closed paths in the

graph HT 1(S).

Triangles. If three vertices have g − 1 common elements and if the remaining

classes c, c′, c′′ satisfy i(c, c′) = i(c, c′′) = i(c′, c′′) = 1, then

〈c〉 −→←− 〈c′〉

տց ւր

〈c′′〉

is a triangle (cf., Figure 1(i)). We denote this triangle by 〈c〉↔〈c′〉↔〈c′′〉↔〈c〉.

Rectangles. If four vertices have g − 2 common elements and if the remaining

classes c1, c2, d1, d2 have representatives C1, C2, D1, D2 as in Figure 1 (ii), then

〈c1, d1〉 〈c1, d2〉

〈c2, d1〉 〈c2, d2〉

−→←−

−→←−

l l

is a rectangle. We denote this rectangle by

〈c1, d1〉 ↔ 〈c1, d2〉 ↔ 〈c2, d2〉 ↔ 〈c2, d1〉 ↔ 〈c1, d1〉.

Pentagons. If five vertices have g − 2 common elements and if the remaining

classes c1, c2, c3, c4, c5 have representatives C1, C2, C3, C4, C5 intersecting each

other as in Figure 1 (iii), then

〈c1, c4〉 〈c1, c3〉

〈c2, c4〉 〈c3, c5〉

〈c2, c5〉

−→←−

տց րւ

րւ տց

is a pentagon. Similar to triangles and rectangles we denote this pentagon by

〈c1, c4〉 ↔ 〈c2, c4〉 ↔ 〈c2, c5〉 ↔ 〈c3, c5〉 ↔ 〈c1, c3〉 ↔ 〈c1, c4〉.
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The Hatcher–Thurston complex HT (S) is a two-dimensional CW-com-

plex obtained from HT 1(S) by attaching a 2-cell along each triangle, rectangle

and pentagon.

C
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C" C

C

D
C

C

C
C
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1

22

1

2

3

4

5

D

( i ) ( ii ) ( iii )

Figure 1. A triangle, a rectangle and a pentagon in the
Hatcher–Thurston complex

Hatcher and Thurston used this complex to get a presentation of the mapping

class group of a closed orientable surface, [HT]. They proved that HT (S) is

connected and simply connected. Wajnryb used it to get a simple presentation

for the mapping class group [W1] and he also gave an elementary proof of the

connectivity and the simple connectivity of this complex in [W2].

Theorem 1 ([HT, W2]): Let S be a compact, connected, orientable surface of

genus at least one. Then the complexHT (S) is connected and simply connected.

The complexes of curves. The complex of curves, C(S), on S is an

abstract simplicial complex, introduced by Harvey [H], with vertex set A, the

set of isotopy classes of nontrivial simple closed curves, such that a set of n + 1

vertices {a0, a1, a2, . . . , an} forms an n-simplex if and only if a0, a1, a2, . . . , an

have pairwise disjoint representatives. The automorphism group of the complex

of curves is isomorphic to the extended mapping class group modulo the center,

except for the cases (g, r) ∈ {(0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2)}. The reader

is referred to [Iv], [K] and [L] for proof of these results.

Let B denote the set of isotopy classes of nonseparating simple closed curves on

S. The complex of nonseparating curves, N (S), is the subcomplex of C(S)

with the vertex set B such that a set of n+1 vertices {b0, b1, b2, . . . , bn} forms an

n-simplex if and only if it is an n-simplex in C(S). If g ≥ 2, the automorphism

group of N (S) is isomorphic to the extended mapping class group of S modulo

its center, by the results given in [Ir3].

In [Sc], Schmutz Schaller defined a graph G(S); the vertex set is again B, the

set of isotopy classes of nonseparating simple closed curves, and two vertices a
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and b are connected by an edge if and only if i(a, b) = 1. He defines the graph

G(S) for surfaces of genus zero as well, but we will not mention that case here.

His main result is the following theorem; we state as much as we need in this

paper. Notice that in the case g = 1, since the vertices of G(S) can be viewed

as vertices in HT (S), the complex G(S) can be considered as a subcomplex of

HT (S) in a natural way. In fact, G(S) is the 1-skeleton of HT (S).

Theorem 2 ([Sc]): Let S be a compact, connected, orientable surface of posi-

tive genus. Then AutG(S) is isomorphic to the extended mapping class group

Mod∗

S modulo the center.

In [Sc], the case (g, r) = (1, 0) is not included, but clearly it follows from the

case (g, r) = (1, 1).

The complex XC. For a nonseparating simple closed curve C on S, we define

a simplicial complex (graph) XC as follows: the vertices of XC are isotopy classes

of nonseparating simple closed curves which are dual to C on S. A set {a, b} of

vertices forms an edge if and only if a is dual to b.

We will need the following definiton in Lemma 3: An embedded arc ǫ on a

surface S with boundary is called properly embedded if ∂ǫ ⊆ ∂S and ǫ is

transversal to ∂S. It is called nontrivial (or essential) if ǫ cannot be deformed

into ∂S in such a way that the endpoints of ǫ stay in ∂S during the deformation.

Lemma 3: If S is a connected orientable surface of positive genus and if C is a

nonseparating simple closed curve on S, then the complex XC is connected.

Proof: Let d and d′ be two distinct vertices in XC . We will show that there is

a path from d to d′ in XC .

Let D and D′ be representatives of d and d′ respectively such that D and D′

have minimal intersection and that they are both dual to C. We may assume,

moreover, that they intersect C at different points. We prove the lemma by

induction on |D ∩D′|.

If |D ∩D′| = 0, then there is an edge between d and tc(d) and between tc(d)

and d′ in XC , where tc is the Dehn twist about c.

If |D ∩D′| = 1, then, by definition, d is connected to d′ by an edge.

Assume that any two vertices which have representatives intersecting less than

m times can be connected by a path in XC . Let |D ∩D′| = m > 1. Let N be

a regular neighborhood of C such that the intersection of D ∪ D′ and N is a

pair of disjoint arcs. Let R be the complement of the interior of N in S and let

∂1 and ∂2 be the boundary components of N . Let τ and τ ′ denote the part of
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D and D′ on R respectively, which are essential properly embedded arcs. We

orient τ and τ ′ so that they both start on ∂1 and end on ∂2. We define an arc

in the following way: Start on the boundary component ∂1 of R, on one side

of the beginning point of τ ′ and continue along τ ′ without intersecting τ ′, till

the last intersection point of τ and τ ′ along τ . Then we would like to follow τ ,

without intersecting τ ∪τ ′, until we reach ∂2. So, if we are on the correct side of

τ ′ we do this; if not, we change our starting side from the beginning and follow

the construction. This gives us an arc, say τ ′′. We see that τ ′′ is an essential

properly embedded arc on R since it connects two boundary components ∂1 and

∂2, and |τ ∩ τ ′′| < m since we eliminated at least one intersection with τ . We

also have |τ ′′ ∩ τ ′| = 0 since we never intersect τ ′.

It can easily be shown that the endpoints of τ ′′ lie in different components of

N\(D∪D′). Now, we connect two endpoints of τ ′′ by an arc in N disjoint from

N ∩D and intersecting each of C and N ∩D′ only once. This gives us a simple

closed curve D′′ intersecting C once, so that the isotopy class d′′ of D′′ is a vertex

in the complex XC . Since |τ ′′ ∩ τ ′| = 0, we have |D′′ ∩ D′| = 1. Thus there is

an edge between d′ and d′′ in XC . We also have |D′′ ∩D| = |τ ∩ τ ′′| < m. By

assumption, d′′ is connected to d by a path in XC . It follows that the complex

XC is connected.

3. Action of automorphisms of HT (S) on nonseparating curves

We define an action of the automorphism group Aut HT (S) of HT (S) on the

set of nonseparating simple closed curves as follows: Let f : HT (S) → HT (S)

be an automorphism of the Hatcher–Thurston complex of the surface S. For

an isotopy class c of a nonseparating simple closed curve C, choose pairwise

disjoint nonseparating simple closed curves C2, C3, . . . , Cg on S such that v =

〈c, c2, . . . , cg〉 is a cut system. Choose another curve D on S such that C and

D are dual and D does not intersect any of Ci. Then w = 〈d, c2, . . . , cg〉 is also

a cut system and the vertices v and w are connected by an edge in the complex

HT (S). Since f is an automorphism, the vertices f(v) and f(w) are connected

by an edge as well. Thus the difference f(v) − f(w) of the sets f(v) and f(w)

contains only one curve. We define f̃(c) to be this unique class.

Notice that if g = 1 then the cut system v contains only one element; v = 〈c〉.

Thus f̃(c) is the unique class in f〈c〉, so that we have 〈f̃(c)〉 = f〈c〉.

Lemma 4: For a fixed set of curves {C2, C3, . . . , Cg}, the definition of f̃(c) is

independent of the choice of the curve D.
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Proof: Let v1 ↔ v2 ↔ v3 ↔ v1 be a triangle in the complex HT (S). Then we

observe that v1 − v2 = v1 − v3.

For a nonseparating simple closed curve A such that 〈a, c2, . . . , cg〉 is a cut

system, let 〈a〉 denote the cut system 〈a, c2, . . . , cg〉.

Let D′ be a simple closed curve on S such that it is dual to both C and D,

and disjoint from Ci for i ≥ 2. Then 〈d′〉 = 〈d′, c2, . . . , cg〉 is also a cut system

and 〈c〉 ↔ 〈d〉 ↔ 〈d′〉 ↔ 〈c〉 is a triangle in HT (S). Since f is an automorphism,

f〈c〉 ↔ f〈d〉 ↔ f〈d′〉 ↔ f〈c〉 is also a triangle in HT (S). By the observation

above we have f〈c〉 − f〈d〉 = f〈c〉 − f〈d′〉.

Suppose now that D′ is an arbitrary simple closed curve on S which is dual

to C and is disjoint from all Ci for i ≥ 2. Then d and d′ are two vertices

of the complex XC . Since this complex is connected by Lemma 3, there is a

sequence d = d1, d2, . . . , dn = d′ of vertices in XC such that di is connected to

di+1 by an edge for all i = 1, 2, . . . , n− 1. By the previous paragraph, we have

f〈c〉 − f〈di〉 = f〈c〉 − f〈di+1〉. It follows that f〈c〉 − f〈d〉 = f〈c〉 − f〈d′〉.

This proves the lemma.

Lemma 5: For a nonseparating simple closed curve C, the definition of f̃(c) is

independent of all choices.

Proof: Suppose that {C2, C3, . . . , Cg, D} and {C′

2, C
′

3, . . . , C
′

g, D
′} are two

choices in the definition of f̃(c). We must prove that both choices give rise

to the same result. More precisely, if v, w, v′ and w′ denote the cut systems

〈c, c2, . . . , cg〉, 〈d, c2, . . . , cg〉, 〈c, c′2, . . . , c
′

g〉 and 〈d′, c′2, . . . , c
′

g〉 respectively such

that v ↔ w and v′ ↔ w′, then we must show that f(v′)− f(w′) = f(v)− f(w).

If g = 1 then there are no Ci and C′

i and the conclusion of the lemma follows

from Lemma 4. So we assume that g ≥ 2.

Suppose first that v′ is connected by an edge to v. Thus there are el-

ements ci0 ∈ v and c′j0 ∈ v′ such that Ci0 and C′

j0
intersect transversely

at one point and v − {ci0} = v′ − {c′j0}. After reindexing if necessary we

can assume that ci0 = c2 and c′j0 = c′2, so that c′i = ci for i ≥ 3. Let

E be a simple closed curve dual to C and disjoint from all Ci and C′

2. Let

t = 〈e, c2, c3, . . . , cg〉 and t′ = 〈e, c′2, c
′

3, c
′

4, . . . , c
′

g〉 = 〈e, c′2, c3, c4, . . . , cg〉. Since

v ↔ v′ ↔ t′ ↔ t↔ v form a rectangle in HT (S) and f is an automorphism,

f(v)↔ f(v′)↔ f(t′)↔ f(t)↔ f(v) is a rectangle in HT (S). Then it is easy

to see that f(v)−f(t) = f(v′)−f(t′). By using Lemma 4, we obtain f(v)−f(t) =

f(v) − f(w) and f(v′) − f(t′) = f(v′) − f(w′). From these, we get the desired
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result f(v)− f(w) = f(v′)− f(w′).

v

v vv v

v1

2 3 4 n-1

n

1 2 n-1
t t tt' t' t'1 2 n-1

w
w'

v= =v'

Figure 2. A path in HT (S)

Let us now consider the general case. Let R denote the surface obtained by

cutting S along the curve C. Thus R is a surface of positive genus. Since all

Ci and C′

i, i ≥ 2, are disjoint from C, we can consider them as curves on R.

Now V = 〈c2, c3, . . . , cg〉 and V ′ = 〈c′2, c
′

3, . . . , c
′

g〉 are two cut systems on R.

Since the Hatcher–Thurston complex HT (R) is connected Theorem 1, there is

a sequence V = V1, V2, V3, . . . , Vn = V ′ of cut systems on R such that Vi is

connected by an edge to Vi+1. If we denote by vi the cut system on S obtained

from Vi by adding c, we get a path v = v1, v2, . . . , vn = v′ in HT (S). For

each i = 1, 2, . . . , g − 1, choose vertices ti and t′i as in the previous paragraph

such that vi ↔ vi+1 ↔ t′i ↔ ti ↔ vi is a rectangle. We showed above that

f(vi) − f(ti) = f(vi+1) − f(t′i). By Lemma 4, we also have f(vi+1) − f(t′i) =

f(vi+1) − f(ti+1). It follows that f(v1) − f(t1) = f(vn) − f(t′n−1). Now the

conclusion f(v)− f(w) = f(v′)− f(w′) follows from Lemma 4.

This completes the proof of the lemma.

Lemma 6: Let c, d be the isotopy classes of two nonseparating simple closed

curves C and D such that i(c, d) = 1. Then i(f̃(c), f̃(d)) = 1.

Proof: It is easy to see that we can find nonseparating simple closed curves

C2, C3, . . . , Cg on S such that v = 〈c, c2, . . . , cg〉 and w = 〈d, c2, . . . , cg〉 are two

vertices in HT (S). Since the geometric intersection of c and d is 1, we see that

v and w are connected by an edge in HT (S). Since f is an automorphism f(v)

and f(w) are also connected by an edge in HT (S). From the definition of f̃ ,

we have {f̃(c)} = f(v)− f(w) and {f̃(d)} = f(w)− f(v). Since f(v) and f(w)

are connected by an edge, we conclude that i(f̃(c), f̃(d)) = 1.
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Lemma 7: If f and h are two automorphisms of HT (S) and if c is the isotopy

class of a nonseparating simple closed curve C, then f̃h(c) = f̃(h̃(c)).

Proof: Let us choose vertices c2, c3, . . . , cg and d in G(S) such that v =

〈c, c2, . . . , cg〉 and w = 〈d, c2, . . . , cg〉 are distinct vertices in the complex HT (S)

which are connected by an edge; v ↔ w. Then {h̃(c)} = h(v) − h(w) and

{f̃h(c)} = fh(v) − fh(w). Since h(v) ↔ h(w), we can use these vertices to

define f̃(h̃(c)):

{f̃(h̃(c))} = f(h(v)) − f(h(w))

= (fh)(v) − (fh)(w)

= {(f̃h)(c)}.

Proposition 8: The mapping f̃ is an automorphism of the graph G(S).

Proof: For a vertex c in G(S), f̃(c) is well-defined. Therefore we have a well-

defined map f̃ : G(S) → G(S). If two vertices c, d are connected by an edge

in G(S), then i(c, d) = 1. By Lemma 6, i(f̃(c), f̃(d)) = 1. Therefore, f̃ is

simplicial.

Let h ∈ AutHT (S) be the inverse of f . Then f̃ h̃ and h̃f̃ are both the

identity automorphisms, because it can be shown that if I ∈ AutHT (S) denote

the identity, then Ĩ(c) = c for all nonseparating simple closed curve C. We

conclude that f̃ : G(S)→ G(S) is a bijection.

In the following proposition we will prove that f̃ preserves geometric inter-

section zero, and hence also is an automorphism of N (S) for closed surfaces.

Proposition 9: If S is a closed surface of genus at least two, then the mapping

f̃ : N (S)→ N (S) is an automorphism.

Proof: By the previous proposition, f̃ is a bijection. So, it is enough to show

that f̃ is a simplicial map on N (S). Let a, b be two distinct vertices of N (S),

which have disjoint representatives A and B on S respectively. We will consider

the following two cases:

Case i: If SA∪B is connected, then {a, b} can be completed to a vertex v in

HT (S). Then, since f(v) is a vertex in HT (S) and f̃(a), f̃(b) ∈ f(v), we see

that f̃(a) and f̃(b) have disjoint representatives on S.

Case ii: If SA∪B is not connected, then we complete A and B to a curve

configuration as shown in Figure 3, by taking a maximal chain {C1, . . . , C2g+1}

with i(ci, ci+1) = 1, i(ci, cj) = 0 for |i − j| > 1, ci ∈ N (S) as shown in the
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figure for g = 4 case (similar chains can be chosen in the other cases). Notice

that SCi∪Cj
is connected for any i, j. So, if i(ci, cj) = 0 then i(f̃(ci), f̃(cj)) = 0

by the first case. If i(ci, cj) = 1, then i(f̃(ci), f̃(cj)) = 1 by Lemma 6. Hence

{f̃(c1), . . . , f̃(c2g+1)} is a maximal chain on S.

C

C

B

A

C2g+11

2

Figure 3. A, B and a chain

We also have that SA∪Ci
is connected for any i. So, if i(a, ci) = 0 then

i(f̃(a), f̃(ci)) = 0 by the first case. If i(a, ci) = 1, then i(f̃(a), f̃(ci)) = 1 by

Lemma 6. Similarly since SB∪Ci
is connected for any i, if i(b, ci) = 0 then

i(f̃(b), f̃(ci)) = 0 by the first case. If i(b, ci) = 1, then i(f̃(b), f̃(ci)) = 1 by

Lemma 6.

Note that i(a, c2k) = i(b, c2k) = 1 for some integer k ∈ {2, 3, . . . , g − 1}

and the intersection numbers of a and b with any other ci is 0. Therefore,

i(f̃(a), f̃(c2k)) = i(f̃(b), f̃(c2k)) = 1 and the intersection numbers of f̃(a) and

f̃(b) with any other f̃(ci) is 0.

Let C′

i ∈ f̃(ci), A′ ∈ f̃(a) and B′ ∈ f̃(b) such that all the curves C′

i, A′ and

B′ intersect minimally with each other for each i. Since A and B are dual to

C2k, A′ and B′ are dual to C′

2k by Lemma 6. Since curves A′ and B′ are disjoint

from the chains C′

1 ∪C′

2 ∪ · · · ∪C′

2k−1
and C′

2k+1
∪C′

2k+2
∪ · · · ∪C′

2g+1 and since

the complement of these two chains is the union of two annuli, the (distinct)

curves A′ and B′ must be disjoint. Because up to isotopy there are only two

simple closed curves on the disjoint union of two annuli and they are disjoint.

Therefore, i(f̃(a), f̃(b)) = 0. This shows that f̃ is a simplicial map on N (S).

Since f̃ is 1-1 and onto, it is an automorphism of N (S).

Remark: If S is a closed surface of genus at least two, by using Proposition 9

and the results in [Ir3], we see that f is induced by a homeomorphism of S.
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4. Automorphisms of HT (S) and mapping class group

In this final section, we state and prove the main result. We then give a corollary

to the main theorem and comment on other possible but similar proofs of the

main theorem.

Theorem 10: Let S be a compact, connected, orientable surface of genus at

least one. Then the mapping ϕ : AutHT (S)→ AutG(S) given by f 7→ f̃ is an

isomorphism.

Proof: By the results of the previous section, ϕ(f) = f̃ is a well-defined auto-

morphism of Aut G(S), and Lemma 7 shows that ϕ is a group homomorphism.

For an element f ∈ AutHT (S) if f̃ is the identity automorphism of G(S),

then it follows from f(〈c1, c2, . . . , cg〉) = 〈f̃(c1), f̃(c2), . . . , f̃(cg)〉 that f acts

trivially on HT (S). Hence, ϕ is one-to-one.

If h is an automorphism of G(S), then h is induced by a homeomorphism F

of the surface S by the results given in [Sc]. Now F induces an automorphism

f of HT (S) and f̃ = h. Hence, ϕ is an isomorphism. This completes the proof

of the theorem.

Corollary 11: Let S be a compact, connected, orientable surface of genus

g ≥ 1 with r ≥ 0 boundary components. If (g, r) 6= (1, 0), (1, 1), (1, 2), (2, 0),

then we have AutHT (S) ∼= Mod∗

S . If (g, r) is one of (1, 0), (1, 1), (1, 2), (2, 0),

then we have AutHT (S) ∼= Mod∗

S /Z2. That is, in all cases AutHT (S) ∼=

Mod∗

S /C(Mod∗

S).

Proof: The proof follows from Theorem 10 and Theorem 2.

This gives us another evidence to the following conjectural statement; the

automorphism group of any natural complex on curves is isomorphic to the

extended mapping class group in generic cases. By using our results given in

this paper, and the main results of [Ir1], [Ir2], [Ir3], [Iv], [Sc], [M], we see that

for most of the compact, connected, orientable surfaces, we have AutHT (S) ∼=

AutN (S) ∼= Aut C(S) ∼= AutG(S) ∼= AutP(S) where P(S) is the pants com-

plex.

If S is a closed surface of genus at least two and f is an automorphism of

HT (S), by using the techniques given in this paper, in particular Lemma 6, we

can see that f induces an automorphism f̃∗ on C(S) by extending f̃ over the

nontrivial separating curves on S by using chains on two subsurfaces that the

separating curves separate. We do the following: Let C be a nontrivial sepa-

rating curve on S. Since g ≥ 2, C separates S into two subsurfaces S1, S2, and
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both of S1, S2 have genus at least one. We take a chain on S1, {a1, a2, . . . , am}

with i(ai, ai+1) = 1, i(ai, aj) = 0 for |i− j| > 1, ai ∈ N (S), such that S1 ∪ {c}

is a regular neighborhood of A1 ∪ A2 ∪ · · · ∪ An where Ai ∈ ai and Ai’s in-

tersect minimally. Since f̃ preserves disjointness and intersection one property,

we can see that the chain {a1, a2, . . . , am} is mapped by f̃ into a similar chain,

{f̃(a1), . . . , f̃(am)} with i(f̃(ai), f̃(ai+1)) = 1, i(f̃(ai), f̃(aj)) = 0 for |i− j| > 1.

Let A′

i ∈ f̃(ai) such that any two elements in {A′

1, . . . , A
′

m} have minimal inter-

section with each other. Let M be a regular neighborhood of A′

1∪A′

2∪· · ·∪A′

m.

Then it is easy to see that M is homeomorphic to R1 ∪ c. Let C′ be the bound-

ary of M . We define f̃∗(c) = [C′] (See [Ir3] for well definedness). This extends

f̃ to a simplicial map f̃∗ on C(S). It can be shown that f̃∗ is an automorphism

on C(S).
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